Correcting for bias of molecular confinement parameters induced by small-time-series sample sizes in single-molecule trajectories containing measurement noise.
نویسنده
چکیده
Several single-molecule studies aim to reliably extract parameters characterizing molecular confinement or transient kinetic trapping from experimental observations. Pioneering works from single-particle tracking (SPT) in membrane diffusion studies [Kusumi et al., Biophys. J. 65, 2021 (1993)] appealed to mean square displacement (MSD) tools for extracting diffusivity and other parameters quantifying the degree of confinement. More recently, the practical utility of systematically treating multiple noise sources (including noise induced by random photon counts) through likelihood techniques has been more broadly realized in the SPT community. However, bias induced by finite-time-series sample sizes (unavoidable in practice) has not received great attention. Mitigating parameter bias induced by finite sampling is important to any scientific endeavor aiming for high accuracy, but correcting for bias is also often an important step in the construction of optimal parameter estimates. In this article, it is demonstrated how a popular model of confinement can be corrected for finite-sample bias in situations where the underlying data exhibit Brownian diffusion and observations are measured with non-negligible experimental noise (e.g., noise induced by finite photon counts). The work of Tang and Chen [J. Econometrics 149, 65 (2009)] is extended to correct for bias in the estimated "corral radius" (a parameter commonly used to quantify confinement in SPT studies) in the presence of measurement noise. It is shown that the approach presented is capable of reliably extracting the corral radius using only hundreds of discretely sampled observations in situations where other methods (including MSD and Bayesian techniques) would encounter serious difficulties. The ability to accurately statistically characterize transient confinement suggests additional techniques for quantifying confined and/or hop diffusion in complex environments.
منابع مشابه
Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory.
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time co...
متن کاملData-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.
Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying sys...
متن کاملAccurately determining single molecule trajectories of molecular motion on surfaces.
This paper presents a method for simultaneously determining multiple trajectories of single molecules from sequential fluorescence images in the presence of photoblinking. The tracking algorithm is computationally nondemanding and does not assume a model for molecular motion, which allows one to determine correct trajectories even when a distribution of movement speeds is present. We applied th...
متن کاملAnalysis of Changes on Mean Particle Size in a Fluidized Bed using Vibration Signature
Vibration signals were measured in a lab-scale fluidized bed to investigate the changes in particle sizes. Experiments were carried out in the bed with a different mass fraction of coarser particles at different superficial gas velocities, and probe heights. The S-statistic test evaluates the dimensionless squared distance between two attractors reconstructed from time series of vibration signa...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2013